
 
 
 

T.E.I. PIRAEUS 
 

Faculty of Engineering 
 

Departments of Electronics and Automation 
 
 
 

MSc in DATA COMMUNICATIONS 
 

COURSEWORK 
 
 

MODULE:  
 

Developing Object Oriented Solutions 
 

CSESM00: CIM234 
 
 
 

Module Coordinator: 
 

Dr Adamopoulos Dionisios 
 
 

Date of Module: 
 

3rd Term (Fall 2005-2006) 
 
 

Name of Student: 
 

Vasileios Balafas 
 
 

 
 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               1 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

Component 1 
 
1) Interface Screens 
 
a) For Doctor Login 
 
The following screens show the iterations that a doctor will experience when logs in the system. 
 

 
 
 
 
 
 
Main Screen – Doctor selects button Doctors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Login Screen – Doctor signs in the system. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Doctor Selects what he wants to see e.g. 
Appointments or Patients 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               2 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 
 
 
 
 
 
Doctor views his assigned patients and he can 
have a report of their detailed profile. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
The detailed report of a patient gives 
information about past examinations and 
conditions of the patient. Doctor can edit the 
profile. 
 
 
 
 
 
 
 
 
 
 
 
In the initial screenshot if doctor selects 
appointments, he can see his schedule and edit 
details for each appointment or cancel one. 
Doctor can also print a weekly appointment 
report - schedule.  
 
 
 
 
 
 

 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               3 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
b) For Patient Login 
 

 
 
 
 
Patient logins in the system after selecting 
Patients in the main screen. Here a new patient 
can be registered in the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
After login, patient can see and edit his 
personal profile (he can edit specified fields 
and not all) according to his rights. He can 
view a report about his examination history 
and arrange or edit an appointment. 
 
 
 
 
 
 
 
 
 
 
 
 
By selecting appointment at the previous 
screen, patient can access a list of doctors, 
select the preferable one and view the 
available hours for meeting him. 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               4 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 
 
 
 
 
After choosing the doctor, patient can see the 
available hours for an appointment with the 
specific doctor and he can SET an 
appointment by pressing the relative button. 
Patient can also see a list of appointments 
where he can change or cancel appointments 
by selecting the “View your appointment list 
button”. 
 
 
 

 
 The above screenshots designed with SmartDraw Suite Edition v.7, depict a prototype of the 
system’s user interface. It can be enriched but it shows satisfactorily the sequence of the screens 
that a user may see in a LAN or in an internet environment. Those screens are depicting a user 
friendly interface and are fully compatible with Web browsing. A database at the background 
maintains and stores information that is useful for the user. The administrator controls and shares 
the appropriate rights to users in a way that users cannot alter information that they should not. 
 The proposed application has advanced capabilities and can inform patients if a doctor 
cancels an appointment, or reminding them their scheduled appointment via e-mail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               5 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

2) Use Case Diagram 
 
 At the following design we can see the Use Case Diagram of the system. 
 

 
 
 
 The use case diagram is the starting point when designing a new system using UML. It is 
used to enumerate the requirements of a system in a way that everybody can understand. The above 
use case diagram depicts the requirements of the system according to the actors who are the doctors 
and the patients. It shows exactly what the system should be able to perform. Patients can log in the 
system, view and edit their personal profile, manage the appointments. New Patients should be able 
to be registered to the system.  
 On the other hand, Doctors login with their already given username and password, manage 
their appointments, view and print their schedule and write reports about the examinations.  
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               6 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

3) Detailed Use Cases 
 
a) Appointment Arrangement 
 
 For the appointment of the arrangements, we can have two categories; those arranged by 
patients and those arranged by doctors after a patient’s phone call or after a visit at the doctor. 
 For the first category we have the following steps for a successful scenario: 
 

 The patient logs in the system, or if he is a new one, he can register 
 He selects the doctor with whom he wants to have an appointment for an examination. 
 He searches for a time that doctor will be available. 
 He selects the preferable available day and time and finally he creates the appointment. 

 
In an unsuccessful scenario, the patient could forget his username or password and then the  

system could send him this information via email using some predefined questions in order to 
identify him uniquely.  
 For the second category, appointments arranged by doctors, we can conclude the following 
steps: 
 

 The patient calls the doctor to arrange a visit. 
 Doctor logs in the system. 
 Doctor checks his schedule and if he is available at the requested time. 
 Doctors creates the appointment 

OR 
 Doctor proposes a different time or date  
 Doctor creates the appointment at the new specified date. 

 
The unsuccessful case would be the unavailability of the chosen doctor at all requested dates 

and times. The system could provide an operation by witch the patient could be proposed another 
doctor available. 
 
b) Patient Examination  
 
 Patient examination is a very important operation of the application because the doctor can 
see the special needs of each patient, view a history report about past examination and note 
conclusions and treatments. 
 Studying the requirements we can conclude the following detailed steps of a successful case 
for this process. 
 

 Doctor logs in the system. 
 Doctor checks patient’s existing profile and reviews the medical record. 
 Doctor actually examines the patient physically. 
 After examination, Doctor updates patient’s profile and medical record. 
 If necessary, Doctor arranges a new appointment with the patient and confirms his schedule. 

 
An unsuccessful scenario could be the inexistence of the patient in the system. Doctor could 

register on-line the new patient, input his profile and provide the patient with his brand new 
username and password.  
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               7 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

4) Requirements and main concepts 
 
 Reading the application’s requirements, the following table can be derived which includes 
the candidate classes. 
 

Patient The first actor of the application. A specific user with characteristics 
that help the system to identify him and to offer him services. 

Patient Data The requirements define the ability to add new fields to a patient that 
are not predefined. A separate class is needed, associated to the 
patient, in order to store those new fields. 

Doctor The second actor. A specific entity with unique attributes. Each 
doctor has his identification and has to have access to his personal 
data. 

Appointment A basic entity that will bridge doctors and patients. Examination 
information will be stored in this class and later will be used to 
generate the medical record of a patient.  

System This will be the central class of the application. The main class. It will 
provide the interface with the actors and will have advances 
capabilities such as the sending of emails. 

 
 The candidate classes represent the main logical elements of the application. Doctor, Patient 
and Appointment classes are referred to the basic entities of the application. Patient Data is an extra 
assistant class that will store new not predefined fields. System will be the core of the application, 
the “engine starter” that can perform external operations. 
 
 
 
 
 
 
 
 
 
5) Sequence Diagram for “Appointment Arrangement” 
 
 Sequence Diagrams are used to show interaction between actors and objects and other 
objects. Messages sent from actor to object, object to object and object to actor are depicted to show 
the flow in a system. Sequence Diagrams are very helpful for the understanding of use cases and the 
way by which those cases are going to be fulfilled. 
  

The following figures show Sequence Diagrams relative to the “Appointment Arrangement” 
use case. According to the analysis of Question 3 there are 2 categories for the arrangement. The 
ones arranged by patients and those arranged by patients. 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               8 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 
Appointments arranged by patients: 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               9 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
Appointments arranged by doctors: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               10 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 
6) Collaboration Diagram for “Patient Examination” 
 
  

Collaboration Diagrams are used to bring class diagrams to the next step. Representing the 
interaction and the relationships between the created objects, these diagrams can be used to model 
messages exchanged between objects.  
 Patient Examination Collaboration Diagram in the following picture depicts the classes 
involved and the actions made for each step.  
 
 
 
 
 

 
 
 
 
 
 Doctor logs in the system, selects the patient, gets his medical report and after examination 
he can update the patient’s medical status. 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               11 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
7) Detailed Class Diagram 
 
 Class Diagrams represent the different underlying pieces and their relationships. They 
include attributes, operations (methods), roles and associations. The detailed Class Diagram of the 
proposed application follows depicting the object-oriented solution that is designed for Component 
1 of the coursework. 
 

 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               12 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

  
 The general role of each class presented in Question 4. The rational is the creation of sets of 
objects that can cooperate in order to offer the required services from the system. Classes 
communicate each other by their methods and important are the LoadData and SaveData methods 
of class System that can offer interoperability with a database. 
 Referring to the two requested use cases, the above Class Diagram is designed having the 
following concept. Each doctor’s schedule can be formed from all the Appointment objects that 
correspond to his unique code. By adopting the same logic each patient’s medical record can be 
derived from the corresponding Appointment objects to his code containing the attribute 
ExaminationData which offers information about past examination results. 
 
 
8) Class Diagram – Requirements  
 
 The proposed Class Diagram fulfills the requirements given by implementing all needed 
characteristics for each application entity in form of attributes. The depicted methods offer the 
requested interaction between those entities and the characteristic example is the class Patient Data 
which is designed to support the need for undefined fields that may contain useful information 
about the patient. The use of attribute PatientCode helps the accumulation of all Patient Data objects 
concerning a unique patient. 
 
9) Sequence Diagram for A10 
 
 

 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               13 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 The above Sequence Diagram presents the case that a doctor cancels an appointment due to 
an emergency situation. The system is expected to send an email to the patient and inform him 
about the cancellation. 
 The email is formed by the reason that the doctor declares and is stored by the cancel 
method of the class appointment. sendCancelMail method identifies the canceled appointment by its 
unique code and has the string reason as input in order to create the email to the patient. 
 Finally the appointment is deleted in order to keep the doctor’s appointment list updated. 
 
  
10) State Diagram for the class of appointment 
 

State Diagrams are used to model the interactions with classes and the system interface, and 
to realize use cases. They are used between the analysis and design phases and visualize the flow of 
an application. The following picture tries to implement this concept regarding the class that models 
an appointment. 
 The operations depicted are the confirmation of the availability of a doctor and the 
manipulation of the lifecycle of an appointment (Created – Canceled – Deleted).  
 

 
 
 
 
 
 
Note for Component 1 
 
 The designs contained in Component 1 were made with SmartDraw Suite Edition v.7. They 
can be also found in the submitted CD of the Coursework in the folder Designs in two types (sdr 
and jpeg) if further and more review is needed.  
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               14 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

Component 2 
 
Model Driven Architecture by Object Management Group 
 
 When looking through the internet and the bibliography for information about the MDA 
(Model Driven Architecture), it is easy to understand that it is a “hot” topic in the programming 
community. Several analysts and programming engineers present their opinion and a lot of work 
has been made about this issue. The majority agrees that the technologies have grown more 
complex over the last years and that there are several tools for programming. Those tools have 
become independent from the logical essence of modeling, which has also become a significant and 
important – most believe vital – part of the programming proceedings. 
 Defining modeling in a simple way, we can say that modeling is a way to think issues 
through before coding at a higher abstraction level without needing to solve a problem or designing 
a solution during the production of code. Nowadays, this is a common consensus and it is 
considered as the best practice among software developers. 
 MDA is proposed by the OMG [1], founded in April 1989 by eleven companies as a non-
profit corporation. OMG’s purpose is to provide specifications and standards to the software 
industry. In the fullness of time, OMG evolved as the leader in providing vendor and language 
independent interoperability standards to the software enterprise and includes more than 800 
members. The main target is to offer the guides for heterogeneous computing environments for 
software development, independent from hardware platforms or operating systems.     
  
 

 
 
 

The above picture [2] is the classic mark of MDA and shows that MDA adopts and includes 
well adopted and mature techniques such as UML (Unified Modeling Language), MOF (Meta-
Object Facility) and CWM (Common Warehouse Metamodel) for the specification of models and 
metamodels. The MDA initiative considers that those elements are the primary artifacts of software 
development, and not the programs [3]. Those exact components constitute the core of the MDA 
initiative. 

UML is a semantic language that can be applied to any software development process. 
Several types of UML diagrams can be used in order to model object-oriented software systems. 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               15 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

Currently UML has reached version 2.0, while version 1.4.2 has become an official ISO 
specification [4].  

MOF is a set of standard interfaces that can be used to define and manipulate a set of 
interoperable meta-models and their corresponding models [5].   

CWM specifies interfaces that can be used to enable easy interchange of warehouse and 
business intelligence metadata between warehouse tools, warehouse platforms and warehouse 
metadata repositories in distributed heterogeneous environments [6]. 

It is not purposeful to get into details about the components of MDA and examine them 
intensively. The key idea is that MDA offers the way to create diachronic models about an 
application once, and those models are offering interoperability, portability and independence from 
platforms in order to get over middleware problems. Many tools are presented in order to make the 
transition between MDA and coding more automated and efficient. Besides, MDA is the effort to 
integrate several specifications that are very helpful but they cannot find a common place in order to 
be iteroperable. 

An important technical detail is that MDA adds great value to the environment of differing 
system architectures with the PIM (Platform Independent Model) that maps PSM (Platform Specific 
Model) to application interfaces, code, GUI descriptors and other vital parts of an integrated 
application. Current research is focusing in how PIM and PSM will be transformed into efficient 
source code automatically [7]. This code must be highly understandable in order to be debugged, 
maintained and extended.  
 Making here a little parenthesis, it is obvious that MDA is a higher level of software 
development consciousness. Traditional engineers claim that models aren’t the product but an 
abstraction of it but in the same time, they recognize that models are very significant for their work.  
It is also obvious that MDA is not just about a modeling tool, but a general and complete 
consideration or proposition for building programs. 
 Returning to the main subject of the coursework, we could separate the process of 
implementing MDA into three main steps - views [8]. The Operational View, the Systems’ View 
and the Technical View. At the first view we meet the PIM where we need to examine what is 
needed to be built and what functions should be offered. At the next level there is the PSM and the 
need to define how all this can be implemented. Finally, at the Technical View, we must define the 
standards for the implementation. All the above views-steps are very well supported by the UML. 
Besides, UML holds the leading role in MDA, being the main tool for the facture of the MDA 
initiative. 
 MDA’s vision is that with its core elements applications could easily cooperate with other 
applications and future needs could be fulfilled without needing to implement structural changes or 
redesign the application. The optimistic intention is to contribute decisively and to be the pioneer in 
distributed ubiquitous and pervasive computing. Integration of different technologies and 
cooperation of different devices and applications in heterogeneous environment is the total vision of 
the computing community. All branches of the Informatics Science are migrating and researching 
this purpose that will bring a new revolution in Information Technology. MDA seems to be the 
contribution of OMG for this project and programming community reckons that MDA may become 
a widely acceptable aspect and not a utopia.   

OMG presents at [9] lots of successful implementations of the MDA initiative and the most 
famous is the case of the Deutsche Bank Bauspar AG witch is referred in many scientific and 
research related works. Those implementations show the potency of MDA and many software 
architects agree that MDA came to stay and compare its future success to the success of the 3GL 
Programming Languages that were presented some decades ago and still remain at the center of the 
programming process.  

On the other hand, there are some researchers who believe that are not very excited with 
MDA. From the above short analysis, in this topic of the coursework, has been made clear that 
MDA is very sophisticated, complicated and some times can become inefficacious in terms of time 
and effort. Furthermore, from my short experience, it is very difficult to teach someone modeling 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               16 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

and how to create sequence diagrams for example. It also difficult to separate the designing 
deliberation from the expected source code and I dare to say that maybe this is an education matter.  
Most people care about the “product” and how soon will be ready and not about the way, the 
philosophy of production and the future needs that will arise. That’s why several commercial 
applications broke down in the near past. Designers and programmers did not think about future 
needs and maintenance. 
 Some experienced analysts claim that similar visions existed in the past too, such as I-Case, 
Application Development Cycle and even CORBA and failed to fulfill their potential. They also 
believe that the tools offered at the moment are not enough or efficient. But, the most powerful 
argument is that every time standards tried to be set, vendors finally implemented their own version 
for competitive reasons.  
 The future only will show if they are right. 
 The fact is that Model Driven Architecture is an “umbrella” of standards for platform 
independent development of applications and software solutions. It supports and promotes a new 
direction for system development that will offer integration, interoperability and portability. Finding 
fitting at a higher lever of abstraction, it demands very good knowledge of its specifications and 
minds capable to comprehend and conceive modeling in an expansive way. MDA seems to be a 
total solution for developers and designers but has to be less complicated and offer efficacious tools 
that will increase productivity. 
 
 
 
 
 
 
 
References  
 
[1] http://www.omg.org/gettingstarted/overview.htm,URL 
[2] http://www.omg.org/mda/, URL 
[3] K. Thramboulidis, “Using UML in Control and Automation: A Model Driven Approach”, 2nd 
IEEE International Conference on Industrial Informatics, Germany, Berlin 2004. 
[4] J. Roff, “UML, A Beginner’s Guide”, Mc Graw Hill, 2003, pp. 2-12.  
[5] http://www.service-architecture.com/web-services/articles/meta-object_facility_mof.html, UML 
[6] http://www.service-architecture.com/web-services/articles/common_warehouse_meta-
model_cwm.html, UML 
[7] MDA drafting team, “A technical Perspective”, Draft, February 2001 
[8] A. Tolk, “Avoiding another Green Elephant – A Proposal for the Next Generation HLA based 
on the Model Driven Architecture”, Simulation Interoperability Workshop Fall 2002, Orlando, 
Florida, September 2002. 
[9] http://www.omg.org/mda/products_success.htm, UML 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               17 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 
 
Component 3 
 
 In this part of the coursework the subject is to create an application for the maintenance and 
the presentation of the monthly progress of sales of some products. Salesmen have to insert their 
salesman number, the number of the product and the value of the amount sold. The initial screen is 
a simple menu as it shown at the following screenshot. 
 

 
 
 
 The main menu provides 4 options. Option 1 begins the process of entering data, the option 
2 shows the monthly report which can be taken at any time in order to provide daily information, 
option 3 is a test environment providing a tool to show the capabilities of the application. Finally, 
option 4 ends the program. 
 Selecting option 1 the application waits to accept values and information from the salesman, 
in other words waits for the sales slip. As we can see the program ensures that the right information 
will be given by reminding to the user the range of the values that he has to insert. If the 
information given is acceptable, a data message appears which informs the user that his slip is 
entered successfully and summarizes his input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               18 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 

 
 
 
 At this second screenshot we can see the error control that the program offers. If 
unacceptable values are entered the program informs the user about his mistake and returns to the 
initial menu. This control takes place at both phases of the entrance of the salesman number and the 
product number. 
 Finally assuming that a normal cycle of data insertion occurs, and then we can select option 
2 and view the monthly report. 
  
 
 
 
 
 

The final screenshot follows, showing the main deliverable of the program which is the 
monthly table of sales. 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               19 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
  
 At this screenshot we can see a simple example of a salesman, who enters his sales slips 
referring at the third product and each one has a product value of 50 €. The monthly report shows 
the total of the amounts that salesman one sold. Making it more complex, you may enter the 
following data in order to ensure the required operations of the program. 
 The proposed scenario is the following: 
 
Salesman 1 sells 1500 € of product 1, 2500 € of product 3, and 500 € of product 4. 
Salesman 2 sells 1800 € of product 2, 2400 € of product 4, and 1500 € of product 5. 
Salesman 3 sells 1900 € of product 1, 2200 € of product 4, and 500 € of product 5. 
Salesman 4 sells 1200 € of product 1, 2500 € of product 2, and 3500 € of product 5. 
 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               20 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
 The monthly report appears at the next screenshot, showing the expected result. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               21 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

Source Code of Component 3 
 
Main Class 
 
package sales; 
 
import java.util.Vector; 
import java.io.*; 
 
public class Main { 
    private static Vector salesSlips = new Vector(); 
     
    public static void getData() { // sets sales slip data 
        Main.salesSlips.add(new salesSlip(1, 5, 500)); 
        Main.salesSlips.add(new salesSlip(1, 2, 200)); 
        Main.salesSlips.add(new salesSlip(1, 3, 350)); 
        Main.salesSlips.add(new salesSlip(2, 1, 100)); 
        Main.salesSlips.add(new salesSlip(2, 2, 120)); 
        Main.salesSlips.add(new salesSlip(2, 3, 340)); 
        Main.salesSlips.add(new salesSlip(3, 4, 1156)); 
        Main.salesSlips.add(new salesSlip(3, 3, 574)); 
        Main.salesSlips.add(new salesSlip(3, 1, 748)); 
        Main.salesSlips.add(new salesSlip(4, 4, 212)); 
        Main.salesSlips.add(new salesSlip(4, 3, 428)); 
        Main.salesSlips.add(new salesSlip(4, 2, 975)); 
    } // end of getData method 
     
    public static void main(String[] args) { 
        salesSlip mySlip = null; 
        int selection; 
        int salesManNumber; 
        int productNumber; 
        double productValue; 
        double lineTotal = 0.00; 
        double columnTotal = 0.00; 
        Double[][] sales = new Double[6][5]; 
         
        while (true) { 
                System.out.println(); 
                System.out.println("1:  Enter new sales slip"); 
                System.out.println("2:  Monthly report"); 
                System.out.println("3:  Load test values"); 
                System.out.println("4:  Exit"); 
        System.out.println(""); 
        System.out.print("Make your selection: "); 
        try { 
            selection = Integer.parseInt(new BufferedReader(new 
InputStreamReader(System.in)).readLine()); 
            } // end try 
        catch (Exception e) { 
            selection = 0; 
            } // end catch 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               22 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

        switch (selection) { 
                case 0: { 
                    break; 
                } // end case 0 
                case 1: { 
                    try { 
                        System.out.println(""); 
                        System.out.print("Type salesman number [1..4]: "); 
                        salesManNumber = Integer.parseInt(new BufferedReader(new 
InputStreamReader(System.in)).readLine()); 
                        if (salesManNumber < 1 || salesManNumber > 4) { 
                          System.out.println("Invalid value. Try again"); 
                          break; 
                        } 
                        System.out.print("Type product number [1..5]: "); 
                        productNumber = Integer.parseInt(new BufferedReader(new 
InputStreamReader(System.in)).readLine()); 
                        if (productNumber < 1 || productNumber > 5) { 
                          System.out.println("Invalid value. Try again"); 
                          break; 
                        } 
                        System.out.print("Type product value: "); 
                        productValue = Double.parseDouble(new BufferedReader(new 
InputStreamReader(System.in)).readLine()); 
                        mySlip = new salesSlip(salesManNumber,  productNumber,  productValue); 
                        Main.salesSlips.add(mySlip); 
                        System.out.println("New slip entered. Data: " + mySlip); 
                    } // end try 
                    catch (Exception e) { 
                        System.out.println("Invalid format. Try again"); 
                    } // end catch 
                    break; 
                } 
                case 2: { 
                    System.out.println(""); 
                    System.out.println("Monthly Report"); 
                    System.out.println("--------------"); 
                     
                    for (int i = 0; i < 6; i++) { // make all places of the table equal to zero 
                        for (int k = 0; k < 5; k++) { 
                            sales[i][k] = 0.00; 
                        } // end columns for 
                    } // end lines for 
                    for (int i = 0; i < Main.salesSlips.size(); i++) { // populate the table 
                        mySlip = (salesSlip)Main.salesSlips.elementAt(i); 
                        salesManNumber = mySlip.getSalesPerson(); 
                        productNumber = mySlip.getProductNumber(); 
                        productValue = mySlip.getTotalValue(); 
                        sales[productNumber-1][salesManNumber-1] += productValue; 
                        } // end for 
                    for (int i = 0; i < 5; i++) { // calculate the line totals 
                        lineTotal = 0.00; 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               23 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

                        for (int k = 0; k < 4; k++) { 
                            lineTotal += sales[i][k]; 
                        } // end columns for 
                        sales[i][4] = lineTotal; 
                    } // end lines for 
                    for (int i = 0; i < 4; i++) { // calculate the column totals 
                        columnTotal = 0.00; 
                        for (int k = 0; k < 5; k++) { 
                            columnTotal += sales[k][i]; 
                        } // end columns for 
                        sales[5][i] = columnTotal; 
                    } // end lines for 
                    System.out.println("Salesman/\r\nProduct\tS1\tS2\tS3\tS4\tTotal"); // start printing the 
table 
                    for (int i = 0; i < 6; i++) {  
                        if (i < 5) { 
                            System.out.print("P"); 
                            System.out.print(i+1); 
                            System.out.print("\t"); 
                        } // end if 
                        else { 
                            System.out.print("Total\t"); 
                        } // end else 
                        for (int k = 0; k < 5; k++) { 
                            if (i==5 && k==4) { 
                                // do nothing 
                            } 
                            else { 
                                System.out.print(sales[i][k] + "\t"); 
                            } 
                        } // end columns for 
                        System.out.println(""); // when previous line is finished start a new line 
                    } // end lines for 
                    break; 
                } 
                case 3: { 
                    Main.getData(); 
                    break; 
                } 
                case 4: { 
                    System.exit(0); 
                    break; 
                } 
        } // end switch 
        } // end while 
//Main.getData(); 
    } // end of main method 
     
} // end of Main class 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               24 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
Assistant class salesSlip.java 
 
 
 
package sales; 
 
public class salesSlip { 
    private int salesPerson; 
    private int productNumber; 
    private double totalValue; 
     
    public salesSlip(int salesPerson_c, int productNumber_c, double totalValue_c) { 
        salesPerson = salesPerson_c; 
        productNumber = productNumber_c; 
        totalValue = totalValue_c; 
    } // end of constructor 
     
    public int getSalesPerson() { 
        return (salesPerson); 
    } // end of getSalesPerson method 
     
    public int getProductNumber() { 
        return (productNumber); 
    } // end of getProductNumber method 
     
    public double getTotalValue() { 
        return (totalValue); 
    } // end of getTotalValue method 
     
    public String toString() { 
        return ("Salesman Number: " + salesPerson + ", Product Number: " + productNumber + ", 
Product Value: " + totalValue); 
    } // end of toString method 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               25 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

Component 4  
 
Component 4 initial screenshot 
 
 

 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               26 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

At the screenshot above we can see how this little application works and manages the 
products of the Storehouse. 

When the application starts a welcome message is shown and the main menu appears with 
the basic options. By selecting option 1 we can add products and their characteristics as it is clear at 
the description of the coursework. If the insertion is successful, the program shows the “Added 
Product:” message with the product’s inserted values.  

The program has the ability to show us all the products by selecting option 3 and at the last 
part of the screenshot we can see that the program controls and checks the integrity of the 
information that we may enter. For example if we add the product code 100 again, then there is a 
message that informs us that the product already exists in the table. 

The main table which stores the information assures the maximum number of products 
which has to be 100, by the declaration of the table which is: 

 
private static product[] products = new product[100]; 

 
The program finishes its operation by selecting the option 4 of the menu. 
 

Source Code of Component 4 
 
Main Class 
 
package storehouse; 
 
import java.io.*; 
 
public class Main { 
    private static product[] products = new product[100]; 
     
    public static void main(String[] args) { 
        int selection, i, productsFound; 
        boolean productFound = false; 
        product myProduct = null; 
         
        String code, description = new String(); 
        long quantity; 
        System.out.println("Welcome to the StoreHouse"); 
        while (true) { // always return here and display menu until user selects 4 
        System.out.println(""); 
        System.out.println("1: Insert a new product"); 
        System.out.println("2: Display a product"); 
        System.out.println("3: Display all products"); 
        System.out.println("4: Exit"); 
        System.out.println(""); 
        System.out.print("Enter selection: "); 
        try { // in case parseInt or readLine throws an exception 
            selection = Integer.parseInt(new BufferedReader (new 
InputStreamReader(System.in)).readLine()); 
        } // end try 
        catch(Exception e) { 
            System.out.println("Invalid Selection"); 
            selection = 0; // selection=0 = case 0 = break and return to menu 
        } // end catch 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               27 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

        switch (selection) { 
            case 0: 
                break; // return to menu 
            case 1:  
                try { // in case an exception is thrown by the data entry 
                    System.out.println(""); 
                    System.out.print("Enter product code: "); 
                    code = (new BufferedReader (new InputStreamReader(System.in)).readLine()); 
                    System.out.print("Enter product description: "); 
                    description = (new BufferedReader (new InputStreamReader(System.in)).readLine()); 
                    System.out.print("Enter product quantity: "); 
                    quantity = Long.parseLong(new BufferedReader (new 
InputStreamReader(System.in)).readLine()); 
                    productFound = false; 
                    for (i = 0; i < products.length; i++) { 
                        if (products[i] == null) { 
                            // do nothing 
                        } // end if 
                        else { 
                            if (products[i].getCode().equals(code)) { // check if a product with this code 
already exists 
                                productFound = true; 
                                break; 
                            } // end if 
                        } // end else 
                    } // end for 
                    if (productFound) { 
                        System.out.println("A product with this code already exists"); 
                        break; 
                    } // end if 
                    for (i = 0; i < products.length; i++) { 
                        if (products[i] == null) { // find the first available place in the array (i.e. in case a 
product was deleted from the array) 
                            products[i] = new product(code, description, quantity); // add product to the array 
                            System.out.println("Added Product: " + products[i]); 
                            break;                             
                        } // end if 
                        else { 
                            // do nothing 
                        } // end else 
                    } // end for 
                } // end try 
                catch (Exception e) { 
                    System.out.println("Invalid format!"); 
                    break; 
                } // end catch 
                break; 
            case 2: 
                try { // in case an exception is thrown by the data entry 
                    System.out.println(""); 
                    System.out.print("Enter product code: "); 
                    code = (new BufferedReader (new InputStreamReader(System.in)).readLine()); 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               28 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

                    productFound = false; 
                    productsFound = 0; 
                    for (i = 0; i < products.length; i++) { 
                        if (products[i] == null) { 
                        // do nothing 
                        } // end if 
                        else{ 
                            productsFound++; 
                            if (products[i].getCode().equals(code)) { // check if a product with this code exists 
in the array 
                                productFound = true; 
                                myProduct = products[i]; 
                                break; 
                            } // end if 
                        } // end else 
                    } // end for 
                    if (productFound) { // if a product with this code exists, print it 
                        System.out.println(myProduct); 
                    } // end if 
                    else if (productsFound == 0) { 
                        System.out.println("No products found"); // the array is empty 
                    } // end else if 
                    else { 
                        System.out.println("No product found with this code"); // the array is not empty but 
no product found with this code 
                    } // end else 
                } // end try 
                catch (Exception e) { 
                    System.out.println("Invalid format!"); 
                    break; 
                } // end catch 
                break; 
            case 3: 
                System.out.println(""); 
                productsFound = 0; 
                for (i = 0; i < products.length; i++) { 
                    if (products[i] == null) { 
                        // do nothing 
                    } // end if 
                    else { 
                        System.out.println(products[i]); // print product found 
                        productsFound++; 
                    } // end else 
                } // end for 
                    System.out.println(productsFound + " products found"); // sum of products found or 0 
if array empty 
                break; 
            case 4: 
                System.exit(0); // exit from program 
                break; 
        } // end switch 
        } // end while 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               29 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

    } // end main method 
     
}  // end Main class 
 
 
Assistant class product.java 
 
package storehouse; 
 
public class product { 
    private String code = new String(); 
    private String description = new String(); 
    private long quantity; 
             
    public product(String code_c, String description_c, long quantity_c) { 
        code = code_c; 
        description = description_c; 
        quantity = quantity_c; 
    } // end of constructor 
     
    public String toString() { 
        return("Code: " + code + ", Description: " + description + ", Available Quantity: " + quantity); 
    } 
     
    public void setCode(String code_c) { 
        code = code_c; 
    } 
     
    public void setDescription(String description_c) { 
        description = description_c; 
    } 
     
    public void setQuantity(long quantity_c) { 
        quantity = quantity_c; 
    } 
     
    public String getCode() { 
        return(code); 
    } 
     
    public String getDescription() { 
        return(description); 
    } 
     
    public long getQuantity() { 
        return(quantity); 
    } 
     
} 
 
 
 

 



DCOM -CIM234 - Developing Object Oriented Solutions                                                                                               30 
 

Balafas Vasileios – MSc in DCOM student - Coursework                                                                                                                    January 2006 

 
Note for Components 3 & 4 
 
 

The programs of Component 3 & 4 were written in NetBeans IDE 4.1 programming 
environment using Java edition 1.5.0_05. They can be also found in the submitted CD of the 
Coursework in the folder Programs and each folder containing the project folder is named Sales and 
Storehouse respectively. If NetBeans IDE 4.1 is used for reviewing them they can be accessed 
directly from File  Open Project selection from the menu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
------- The End ------- 

 


